The Block Relation in Computable Linear Orders

نویسنده

  • Michael Moses
چکیده

A block in a linear order is an equivalence class when factored by the block relationB(x, y), satisfied by elements that are finitely far apart. We show that every computable linear order with dense condensation-type (i.e. a dense collection of blocks) but no infinite, strongly η-like interval (i.e. with all blocks of size less than some fixed, finite k) has a computable copy with the non-block relation ¬B(x, y) computably enumerable. This implies that every computable linear order has a computable copy with a computable non-trivial self-embedding, and that the long-standing conjecture characterizing those computable linear orders every computable copy of which has a computable non-trivial self-embedding (as precisely those that contain an infinite, strongly η-like interval) holds for all linear orders with dense condensation-type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computability and uncountable Linear Orders II: degree spectra

We study the computable structure theory of linear orders of size א1 within the framework of admissible computability theory. In particular, we study degree spectra and the successor relation.

متن کامل

Η-representation of Sets and Degrees

η + a0 + η + a1 + η + a2 + η . . . where each ai consists of ai elements linearly ordered then such a set has a strong η-representation. When A can be represented by such a computable linear order but the blocks ai may occur in any order and repetitions of blocks of the same size allowed, then A has an η-representation. And when A can be represented by such a computable linear ordering where th...

متن کامل

Computability and uncountable Linear Orders I: Computable Categoricity

We study the computable structure theory of linear orders of size א1 within the framework of admissible computability theory. In particular, we characterize which of these linear orders are computably categorical.

متن کامل

On initial segments of computable linear orders

We show there is a computable linear order with a 02 initial segment that is not isomorphic to any computable linear order.

متن کامل

On limitwise monotonicity and maximal block functions

We prove the existence of a limitwise monotonic function g : N→ N \ {0} such that, for any Π1 function f : N → N \ {0}, Ran f 6= Ran g. Relativising this result we deduce the existence of an η-like computable linear ordering A such that, for any Π2 function F : Q → N \ {0}, and η-like B of order type ∑ {F (q) | q ∈ Q }, B A . We prove directly that, for any computable A which is either (i) stro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Notre Dame Journal of Formal Logic

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2011